66 research outputs found

    The Most Popular Smartphone Apps for Weight Loss: A Quality Assessment

    Get PDF
    Background: Advancements in mobile phone technology have led to the development of smartphones with the capability to run apps. The availability of a plethora of health- and fitness-related smartphone apps has the potential, both on a clinical and public health level, to facilitate healthy behavior change and weight management. However, current top-rated apps in this area have not been extensively evaluated in terms of scientific quality and behavioral theory evidence base. Objective: The purpose of this study was to evaluate the quality of the most popular dietary weight-loss smartphone apps on the commercial market using comprehensive quality assessment criteria, and to quantify the behavior change techniques (BCTs) incorporated. Methods: The top 200-rated Health & Fitness category apps from the free and paid sections of Google Play and iTunes App Store in Australia (n=800) were screened in August 2014. To be included in further analysis, an app had to focus on weight management, include a facility to record diet intake (self-monitoring), and be in English. One researcher downloaded and used the eligible apps thoroughly for 5 days and assessed the apps against quality assessment criteria which included the following domains: accountability, scientific coverage and content accuracy of information relevant to weight management, technology-enhanced features, usability, and incorporation of BCTs. For inter-rater reliability purposes, a second assessor provided ratings on 30% of the apps. The accuracy of app energy intake calculations was further investigated by comparison with results from a 3-day weighed food record (WFR). Results: Across the eligible apps reviewed (n=28), only 1 app (4%) received full marks for accountability. Overall, apps included an average of 5.1 (SD 2.3) out of 14 technology-enhanced features, and received a mean score of 13.5 (SD 3.7) out of 20 for usability. The majority of apps provided estimated energy requirements (24/28, 86%) and used a food database to calculate energy intake (21/28, 75%). When compared against the WFR, the mean absolute energy difference of apps which featured energy intake calculations (23/28, 82%) was 127 kJ (95% CI -45 to 299). An average of 6.3 (SD 3.7) of 26 BCTs were included. Conclusions: Overall, the most popular commercial apps for weight management are suboptimal in quality, given the inadequate scientific coverage and accuracy of weight-related information, and the relative absence of BCTs across the apps reviewed. With the limited regulatory oversight around the quality of these types of apps, this evaluation provides clinicians and consumers an informed view of the highest-quality apps in the current popular app pool appropriate for recommendation and uptake. Further research is necessary to assess the effectiveness of apps for weight management

    Nutritional Systems Biology Modeling: From Molecular Mechanisms to Physiology

    Get PDF
    The use of computational modeling and simulation has increased in many biological fields, but despite their potential these techniques are only marginally applied in nutritional sciences. Nevertheless, recent applications of modeling have been instrumental in answering important nutritional questions from the cellular up to the physiological levels. Capturing the complexity of today's important nutritional research questions poses a challenge for modeling to become truly integrative in the consideration and interpretation of experimental data at widely differing scales of space and time. In this review, we discuss a selection of available modeling approaches and applications relevant for nutrition. We then put these models into perspective by categorizing them according to their space and time domain. Through this categorization process, we identified a dearth of models that consider processes occurring between the microscopic and macroscopic scale. We propose a “middle-out” strategy to develop the required full-scale, multilevel computational models. Exhaustive and accurate phenotyping, the use of the virtual patient concept, and the development of biomarkers from “-omics” signatures are identified as key elements of a successful systems biology modeling approach in nutrition research—one that integrates physiological mechanisms and data at multiple space and time scales

    A semi-natural approach to mixedwood management in the prairie provinces

    No full text
    corecore